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The interaction of a Karmhn vortex street with an elliptical edge is investigated 
experimentally. Basic types of interaction, as a function of scale and transverse 
displacement of the incident vortex street, are revealed using flow visualization. 
Unsteady pressure fields induced by these interactions are measured by a phase- 
averaging technique and correlated with the visualized flow patterns for basic classes 
of interactions. 

For a generic vortex-edge interaction, measurements of the phase-averaged 
velocity field allow construction of streamlines and vorticity contours showing the 
details of the interaction, including distortion of the vortical structures near the 
edge. The pressure field is calculated from the measured velocity field and interpreted 
in relation to the vortical structures. 

Simulation of flow visualization using the measured velocity field demonstrates 
possible misinterpretations related to the underlying vorticity field. 

1. Introduction 
Unsteady loading of a body in an unsteady shear flow arises from interaction of 

various types of unsteady vorticity fields with the surface of the body. These 
interactions are important in the areas of flow-induced vibration and noise 
generation. Among the types of vorticity field-body interactions, the case of a body 
in the wake of another body is of fundamental importance. Rotor blades passing 
through the wakes of stator blades in turbomachinery and tubes in the wakes of 
upstream tubes in a heat exchanger tube bank are typical examples of wake-body 
interactions. 

The nature of the unsteady vorticity field-body interaction is predominantly 
affected by the scale and circulation of the incident disturbances. The scale of the 
incident vorticity field relative to the body dimensions is an important parameter 
which determines the type of interaction mechanism. Even if the turbulent character 
of the incident wake is ignored, the interaction of highly coherent vortices with the 
body remains an unclarified problem. 

If the characteristic wavelength of the incident vorticity field is much larger than 
the scale of the body, the induced pressure on the body will be well correlated and 
its influence felt simultaneously over the entire body. Under these circumstances, the 
flow may be regarded as quasi-steady and i t  can be shown (Davenport 1977) that  the 
fluctuating pressure will be proportional to pU, q', where q' denotes instantaneous 
fluctuating velocity. In this approximation, the acceleration-induced component of 
pressure is neglected ; moreover nonlinear convective terms are neglected as well on 
the basis that q'lU, is very small. This result gives a useful relation between pressure 
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and velocity fluctuation spectra, which is used in wind engineering applications (see 
Davenport 1977). 

When the wavelength of the incident vorticity field is of the same order as the body 
scale, nonlinear and viscous effects may be important. Several classes of coherent 
vorticity field-leading edge interactions have been reviewed by Rockwell (1983). 
These quasi-two-dimensional vortex-edge interactions suggest the most crucial 
parameters: the circulation, which is related to the vortex scale; the degree of 
vorticity concentration ; and the relative location of the incident vortex with respect 
to the leading edge. It is shown that unsteady pressure fields along the surface of the 
edge take the form of downstream travelling pressure waves having defined 
wavelengths (Kaykayoglu & Rockwell 1985). Of course, the ratio of the incident 
disturbance wavelength to the wavelength of the pressure wave on the body will be 
a function of the scale of the unsteady vorticity field as well as the mean vorticity 
field and its subsequent distortion by the leading edge. The amplitude and 
wavelength of this pressure wave will determine the loading in the leading-edge 
region and the associated noise radiation. 

Experimental observations of vortex-leading edge interactions show a number of 
complexities. Typically, the vortical structures are subjected to rapid distortion near 
the body, and in some cases they may be severed (or distended) a t  the leading edge. 
Moreover, boundary-layer separation and secondary vortex formation may occur 
(Ziada & Rockwell 1982). In certain edge configurations, such as a finite-thickness 
leading edge (Sohn 1985), severing of the vortex has not been observed. All of these 
experiments were done with a mixing-layer configuration and the emphasis was on 
the pressure loading and flow visualization. For the analogous case of an unstable 
axisymmetric jet interacting with a cone aligned along the axis of the jet, similar 
types of interaction mechanisms have been observed. Vorticity contours show the 
features of flow separation induced by the incident axisymmetric vortices (Nelson 
1986). Interaction of an axisymmetric vortex ring incident upon a flat plate oriented 
normal to the axis of the vortex was investigated by Didden & Ho (1984). Detailed 
measurements of the fluctuating vorticity field showed indications of flow separation 
and secondary vortex formation (see also Cerra & Smith 1983). To date, there has 
been no quantitative characterization of the classical interaction of a two- 
dimensional vorticity field with a leading edge, including phase-averaged vorticity 
distributions in conjunction with surface pressure measurements along the leading 
edge. 

Although flow visualization suggests that  changes in the unsteady vorticity field, 
such as distortion and severing of vortical structures, are possible, there is ambiguity 
of interpretation. In  other words, how the distortion of a streakline or timeline 
pattern is related to the distortion of a vorticity field remains unclarified. If hhe flow 
marker (such as dye or smoke) is introduced well upstream, the visualized flow in 
downstream regions may have little to do with the real flow because the markers 
represent the integrated history of motion (e.g. Cimbala, Nagib & Roshko 1988). On 
the other hand, if the markers are introduced locally, some other aspects of 
misinterpretation, such as an appearance of amplifying streaklines in a neutral wave, 
are possible (Hama 1962; Gursul, Lusseyran & Rockwell 1989). 

Simulation of vortex-edge interactions has been studied by several investigators. 
In  order to gain physical insight, interaction of potential (point) vortices with plates 
(Rogler 1974), leading edges (Panaras 1985) and steps (Conlisk & Veley 1985) have 
been considered. These models involving point vortices cannot be expected to 
simulate all of the features of shear layers which have highly distributed vorticity. 
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For instance, rapid distortion and severing of the incident vorticity field near the tip 
region, and possible generation of secondary vortices, require separate modelling. 
However, these models can give physical explanations of certain aspects of the 
interaction. For example, the order of magnitude of the pressure fluctuations can be 
estimated in different flow regions (Rogler 1974). Panaras (1985) predicted pressure 
pulses as a result of the interaction of a discrete vortex with a ramp and an ellipse. 
In addition, he addressed the effect of the unsteady velocity potential on the pressure 
fluctuations. 

Concerning the simulation of distributed vorticity field-leading edge interactions, 
a number of point vortices of small strength have been used to represent a finite-area 
vortex (Panaras 1987). This model proved to be successful for simulating the 
distortion of the vortical structures owing to the strain field induced by the presence 
of the body. Kaykayoglu (1987) has demonstrated that a similar model simulated 
selected features of the large-scale distortion as the body is approached. 

However, all these discrete vortex simulations are inviscid and therefore assume 
that the boundary layer on the body is very thin and does not play a significant role 
in determining the flow structure. It is, however, known that all sources of vorticity 
for constant density flows are located on the boundaries (Morton 1984) and their 
strength is related to the tangential pressure gradients along the boundary. Since the 
leading edge is a region of large pressure gradients, generation of vorticity is 
concentrated around it. The strength of the vorticity sources a t  the leading edge will 
be time-dependent because of the unsteady pressure gradients. In  fact, interaction of 
the incident vorticity field with the boundary-layer vorticity is an important aspect 
of this class of problems. Doligalski & Walker (1984) studied the interaction of a 
point vortex with an infinite wall for high Reynolds number. By using the unsteady 
boundary-layer equations, it was shown that boundary-layer separation occurs on 
the wall, followed by an eruption process. This means that the wall-layer vorticity 
is partly transferred into the outer flow. 

The present investigation examines experimentally the interaction of a KQrmtin 
vortex street with an elliptical leading edge. The experimental techniques are 
summarized in $2. Different scales and relative locations of the incident vortex street 
are examined in $3, and the corresponding vortex-edge interactions are classified 
using flow visualization techniques. In  $4, the phase-averaged unsteady pressure 
distributions on the surface of the edge are presented and correlated with the flow 
visualization. For the generic case of an incident vortex street aligned with the 
leading edge, the phase-averaged velocity field is studied in $ 5  ; instantaneous 
streamlines and vorticity contours are presented to show distortion of the incident 
vortices and an attempt is made to calculate the pressure distribution. In  $6, the 
measured velocity field is used to simulate and reproduce the visualized interaction. 
Difficulties encountered in interpretation of flow visualization of the interaction are 
illustrated. Finally, the conclusions are summarized in $ 7 .  

2. Experimental system 
Figure 1 shows an overview of the vortex street-dge arrangement. Details of the 

elliptical edge and the water channel are described by Sohn (1985). The elliptical 
leading edge has a ratio of major to minor axes of 5 :  1 and is attached to a long plate. 
During the experiments, the half-thickness of the body H and the free-stream 
velocity U, were kept constant, while the offset distance E and the wavelength A ,  of 
the undisturbed vortex street were varied. The vortex streets incident upon the 
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FIQURE 1. Vortex streekbody arrangement. 

elliptical edge were generated by using upstream plates with different thicknesses. 
The Reynolds number based on the plate thickness was in the range 309-619. The 
thickness of the body was 2H = 2.54 cm, the free-stream velocity was U ,  = 
9.65 cm/s, and the distance between the upstream plate and the leading edge was 
L / H  = 12. 

The flow structure was visualized by dye streaklines only during the initial stage 
of the investigation. In the later stages (and in all the visualization pictures herein), 
t,he hydrogen-bubble technique was used. A vertical platinum wire of 0.025 mm 
diameter was placed a t  various locations upstream of the leading edge. As will be 
shown later, the location of the wire is important in interpreting details of the 
visualized flow. In  all flow visualization shown herein, the wire is located at  x = 
- 12 cm ( s / H  = -9.45), unless otherwise noted. The duration time for hydrogen- 
bubble generation from the wire is adjustable by using a tuneable pulse generator. 
Finite duration time generates finite-thickness timelines, whereas continuous 
generation of the bubbles produces markers that correspond to streaklines. Lighting 
was provided by two 90 W stroboscopic lamps. 

An Instar I V  high-speed video system was used to record the visualized flow 
patterns. This system has a framing rate of 120 frames/s and a split-screen capability 
which allows simultaneous recording of the flow pattern and instantaneous traces of 
the pressure transducer outputs. 

The unsteady pressure field was measured by using high-sensitivity Kulite 
pressure transducers (XCS-190-2D) with a Paralene coating. A total of 21 pressure 
taps were located along the leading-edge region of the semi-elliptical body, one a t  the 
tip and the others on the upper and lower surfaces. The diameter of each pressure tap 
was 0.79mm. Channels connecting the taps to the transducers had a diameter of 
1.59 mm and lengths ranging from 5.5 to 12.1 em. A major concern was the amplitude 
and phase distortion of the pressure signal owing to the finite length of these 
channels. An extensive calibration method was devised to check this effect (Sohn 
1985). An eccentric motor drive was used to displace a fixcd volume of water 
sinusoidally in a cylindrical tank in order to produce pressure variations of desired 
frequency and amplitude. The leading edge was placed at the bottom of the tank. A 
reference pressure transducer was mounted rigidly next to the active tap of the edge. 
With this method, it was possible to record pressure signals from the tap under 
consideration and from the reference transducer. Cross-spectral analysis showed that 
there were maximum amplitude and phase distortions of 5% and 2" respectively. 

Velocity measurements were performed with a single component laser-Doppler 
anemometer (LDA) driven by an Argon-ion, 2 W laser. It operates in the backscatter 
mode and has a beam expander to optimize the signal-to-noise ratio. The data rate 
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was high enough to allow use of the analog output of the counter of the LDA system. 
The diameter of the measuring volume was about 0.07 mm. Silicon carbide particles 
of 1.5pm diameter were used as a seeding medium. Measurements could be acquired 
a t  a minimum distance from the surface of the leading edge of about 1 mm. 

The velocity measurement grid consisted Df 20 streamwise (z-axis, u-velocity) 
locations with variable spacing ranging from a to &, of the wavelength in the 
undisturbed vortex street. In  the cross-stream direction (y-axis, v-velocity), there 
were 30 measuring locations in increments of 1.27 mm. All measurements were 
carried out in the midplane of the flow ; this plane also corresponded to the locations 
of the pressure taps on the surface of the edge. Unless otherwise noted, the 
instantaneous velocity is represented by a lower-case letter, the mean velocity by a 
capital letter, and the fluctuating component with a primed lower-case letter, e.g. 
u = U+u‘. The same notation applies to vorticity. 

For the pressure and velocity measurements, it was necessary to use a reference 
velocity signal ; it was obtained from a hot film located a t  the upper edge of the shear 
layer of the incident vortex street. Cross-spectral analysis using a fast Fourier 
transform (FFT) method in a MINC minicomputer provided the amplitude and 
relative phase angles between the reference velocity signal and the desired velocity 
or pressure signal. For each cross-spectral analysis, 25 oscillation cycles were sampled 
and a total of six spectra were averaged to give the final values. This method of 
measurement gives phase-averaged quantities. The question arises as to how well a 
phase-averaged cycle of the pressure or velocity oscillation represents an individual 
cycle. This uncertainty can be estimated from the standard deviations for the 
ensemble-averaged amplitudes and phase angles. As addressed subsequently (see 
equation (3)), the fluctuation field is represented in terms of travelling waves. The 
uncertainties for the velocity field are estimated by performing a perturbation 
analysis (Gursul 1988). Using this approach, the uncertainties for the streamwise and 
cross-stream components are 6u = 0.03U, and 6v = 0.05Uw. Near the surface of the 
elliptical edge, the components normal and tangential to the surface were measured 
and the streamwise and cross-stream components were deduced from these 
measurements. The corresponding uncertainty for the amplitude of the cross-stream 
component is estimated as 6v, = 0.08Um in the worst case. 

3. Flow visualization 
The purpose of this part of the investigation was to explore and classify the basic 

mechanisms of interaction of the Karm&n street with the elliptical leading edge. In 
these experiments, the free-stream velocity Uw was kept constant. The offset 
distance e (figure l) ,  the wavelength A ,  in the undisturbed vortex street and the half- 
thickness of the body H determine the type of the interaction for a fixed aspect ratio 
ellipse. In  general, it is possible to classify the flow+dge interactions based on the 
lengthscale of t,he flow represented by A J H .  Two representative scales, designated 
as ‘small- ’ and ‘large- ’ scale vortex streets, were studied. 

The interactions of the small-scale vortex street are shown in figure 2. The vortex 
street of two rows of alternating vortices impinges upon the body and one of two 
possible flow patterns exists: (a) the two rows are separated by the body (&/2H = 0 
in figure 2); or (b )  the two rows stay together after impingement ( s /2H = 0.39 and 
0.59 in figure 2). Further examination of values of e / 2 H  between 0 and 0.39 showed 
that there was no case for which each vortex in a given row is split a t  the leading 
edge. In  other words, the wavelength between the vortices is so small that they are 
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FIGURE 2. Interactions for small-scale vortex street h J 2 H  = 0.81. 
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FIQURE 3. Interactions for large-scale vortex street hJ2H = t .62. 

convected along the body without splitting, even though they may be distorted 
substantially. Of course, for small values of e / 2 H ,  the distortion is greatest. 

Figure 3 shows interactions of the large-scale vortex street for which the 
dimensionless wavelength is twice as large as the previous case. At c /2H = 0, the 
vortex street is divided in a similar fashion as for the case of figure 2. However, there 
is substantially less distortion of the individual vortices. In addition to the types of 
interaction described in figure 2, figure 3 (see also time sequence in figure 6 b)  reveals 
that an additional flow pattern is possible : each vortex in a given row is split into two 
while the vortices in the other row continue to move along the surface of the body. 

In  summary, there exist three basic vortex-edge interaction mechanisms as 
sketched in figure 4: ( a )  the vortex street preserves itself (case A);  ( b )  the vortex 
street becomes two separate single rows of vortices (case B) ; or ( c )  one row of vortices 
is split and loses its identity as a row of vortices (case C). The first two of these 
possibilities are observed for both the small-scale and large-scale vortex streets, 
whereas the last one is inherent only to the large-scale street and is the most 
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FIQURE 4. Summary of flow visualization and different interactions. 

complicated interaction. Of course, these interaction mechanisms determine the 
unsteady loading on the body. In  the next section, the unsteady pressure field on the 
body will be related to the flow visualization. 

4. Phase-averaged unsteady pressure field 
Pressure measurements were carried out for the cases shown in figures 2 and 3. In  

general, the digitized time records of the measured pressure and velocity signals 
showed an essentially periodic character. Spectral analysis of the signals showed one 
dominant frequency, namely the Ktirman street frequency, while the amplitude of 
the second harmonic was not more than 20% of this fundamental frequency 
component denoted as f. Therefore, the pressure fluctuation on the body can be 
approximated by 

where p A  and G p  are determined from spectral analysis; and Gp(0)  is determined 
from flow visualization performed simultaneously with the pressure measurements. 
From this information, it is possible to reconstruct the instantaneous pressure field 
and to relate it to the visualized flow pattern. 

p’(x, t ,  = cos (2nfft-@p(x)), (1) 

FIGURE 5. (a) Variation of pressure fluctuation amplitude for small- and large-scale vortex streets 
h , / 2 H  = 0.81 and h,/2H = 1.62. (a) Variation of normalized pressure fluctuation amplitude for 
small-scale vortex street h J 2 H  = 0.81. ( c )  Variation of normalized pressure fluctuation amplitude 
for large-scale vortex street AJ2H = 1.62. 
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FIGURE 5. For caption see facing page. 
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s/ZH = 0 6 /2H = 0.16 E/ZH = 0.39 ~ j 2 H  = 0.59 
- h J 2 H  = 0.81 0.08 0.10 0.03 

&/2H = 1.62 0.22 0.24 - - 

TABLE 1 .  Values of ( p , ) , , , / ~ p U a ,  as functions of h J 2 H  and ej2H 

The order of magnitude of the pressure fluctuation amplitude varies strongly with 
the transverse location E / ~ H  of the incident vortex street as well as its lengthscale 
hJ2H. In all cases, U ,  was kept the same in order to allow a direct comparison of 
the pressure amplitudes. For example, the distributions of the amplitude p A  for the 
small- and large-scale vortex streets in the case of E = 0 are compared in figure 5 (a )  
(in this figure (pA)max/pCia = 0.11). The similarity between these two distributions 
suggests a weak dependence on a characteristic Reynolds number U,h,/v in the 
range 2006-4012, and therefore implies a predominantly inviscid interaction. 

The distributions of the normalized pressure fluctuation amplitude for different 
locations (e/2H) of the incident vortex street, but for the same scale hJ2H = 0.81, 
are summarized in figure 5 ( b ) .  In  this figure and all following figures, the magnitude 
of the pressure is proportional to the perpendicular distance from the surface of the 
body to the curve. Similarly, relative amplitudes for the large-scale (A,/2H = 1.62) 
vortex street are shown in figure 5 ( c ) .  In the following section, the instantaneous 
pressure fields for each case will be reviewed individually. The pressure is normalized 
by its maximum value for each respective case under consideration. The values of 
maximum pressure fluctuation amplitudes for these cases are summarized in table 1 .  

4.1. Interaction of small-scale vortex street 
In figure 6(a-c) ,  the unsteady pressure fields and corresponding visualized flow 
patterns are shown for s/2H = 0,0.39 and 0.59. For each case, three successive times 
with a time interval iT are considered, where T is the period. The grid-hatched 
regions show the amplitude p A ( x )  and the cross-hatched regions indicate the 
instantaneous pressure p’(x,  t ) .  Again, the magnitude of the pressure is proportional 
to the perpendicular distance from the surface to the curve. 

In the case of zero offset (e/2H = 0), the amplitude distributions on the upper and 
lower surfaces are symmetrical within 5 %  accuracy and the phase difference is 
nk0.1 radians. For this reason, only the upper part of the distribution is shown. In 
the tip region, the approaching vortex with a clockwise circulation causes a positive 
peak in the pressure fluctuation. For the most part, downstream of the tip of the 
leading edge, the vortex-induced pressure is similar to that of a point vortex past an 
infinite flat plate (Gursul 1988). Along this part of the edge the regions of negative 
pressure approximately correspond to the locations of the vortices. 

For the cases of non-zero offset (s/2H + 0, see figures 6 b  and 6 c ) ,  there is no sharp 
peak in the time-averaged pressure amplitude envelope (grid-hatched region). 
Although the absolute pressure amplitude differs substantially with the offset 
distance e (see figure 5 b ) ,  the interactions a t  e/2H = 0.39 and 0.59 are very similar. 
The gradual variation of pressure amplitude attains its maximum approximately at 
the location where the trajectory of the vortex street is closest to the body. This 
distribution of the pressure amplitude is very similar to that predicted by the discrete 
vortex simulation of Kaykayoglu (1987). The .vortices of the lower row of the 
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FIGURE 6. For caption see page 223. 

Karman street (with counterclockwise circulation) cause a negative peak in the 
unsteady pressure. For the case of zero offset (&/2H = 0), the vortices of the upper 
row (with clockwise circulation) give the same result. Therefore, the sense of the 
rotation has no effect on the phase of the induced pressure signal, which can be 
verified by considering a point vortex past an infinite flat plate (Gursul 1988). 

4.2. interaction of large-scale vortex street 
In figures 7 ( a )  and 7 ( b ) ,  the unsteady pressure field and the visualized flow patterns 
are shown for E/ZH = 0 and 0.16 at three successive times. The time interval between 
the plots is one-sixth of the period T. In  the case of E = 0 (figure 7 a ) ,  substantial 
distortion of vortices in both the upper and lower rows is observed. The nature of the 
pressure field induced by each vortex on the lower side of the incident street is the 
same as on the upper side, except shifted in phase by 7c. All of the observations made 
for the corresponding small-scale interaction of figure 6 are valid here as well. 
Although the wavelength of the pressure fluctuation is twice as large as that of the 
small scale, the normalized amplitude distributions are very similar. This interaction 
of figure 7 ( a )  is described in further detail subsequently. 
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FIQURE 6. For caption see facing page. 

The asymmetrical interaction ( e /2H = 0.16) shown in figure 7 ( b )  is more complex. 
While the vortices in the upper row are swept along the edge with minor distortion, 
those in the lower row are rapidly distorted, or distended. Concerning the tip region, 
figure 7 ( b )  shows that the approaching vortex in the upper row with clockwise 
circulation induces positive pressure, and vice versa for the vortex in the lower row 
with counterclockwise circulation. 
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FIGURE 6 (a) Unsteady pressure field and corresponding visualized flow patterns for e/2H = 0 at 
three successive times separated by an interval At/T = ). A J 2 H  = 0.81. Grid-hatched regions and 
cross-hatched regions represent respectively amplitude and instantaneous value of pressure 
fluctuation. ( b )  Unsteady pressure field and corresponding visualized flow patterns for e /ZH = 0.39 
at three successive times separated by an interval At/T = t .  A,/2H = 0.81. Grid-hatched regions 
and cross-hatched regions represent respectively amplitude and instantaneous value of pressure 
fluctuations. ( c )  Unsteady pressure field and corresponding visualized flow patterns for 4 2 H  = 0.59 
a t  three successive times separated by an  interval At/T = t. A J 2 H  = 0.81. Grid-hatched regions 
and cross-hatched regions represent respectively amplitude and instantaneous value of pressure 
fluctuation. 

5. Phase-averaged flow field 
Detailed velocity measurements were carried out for the generic case of the larger 

scale Karman street at zero offset, e/2H = 0 (see figure 1).  The station a t  z = -8.0 
cm is the upstream boundary of the measurement grid and lies within the region of 

the undisturbed flow. The mean velocity profile measured a t  this station is well fitted 
by a Gaussian profile. 

(2 )  
u,-u 

u, - VCL 
= exp ( - a P ) ,  

where Y = y / b  and b is the half-width of the wake. Velocity U,, is the value of U on 
the centreline. The constant a is taken as 0.693 in order to make ( U ,  - U ) / ( U ,  - UcL) 
= 0.5 a t  Y = f 1. I n  this experiment, the centreline velocity was equal to O.SlU, and 
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FIGURE I. For caption see facing page. 

b = 6.35 mm. From the measured velocity distribution, the calculated displacement 
thickness 6* and momentum thickness S were 2.83 mm and 2.49 mm, respectively. 
The Reynolds number based on the free-stream speed Urn and the momentum 
thickness S was U ,  S/v = 243. In  order to make a comparison with the well-known 
wake regimes of a circular cylinder, an equivalent Reynolds number was obtained by 
equating the drag of the cylinder and the plate used in the experiments. Since the 
momentum thickness for the plate is known from the measurements, this provided 
a Reynolds number based on the diameter of about 300. 

Using a hot-film signal as a reference, the amplitudes and relative phase angles 
could be obtained by cross-spectral analysis. The second harmonic component did 
not exceed O.O2U, throughout the flow field and its amplitude derivative in the cross- 
stream direction was a t  least one order of magnitude smaller than that of the 
fundamental component. Therefore, considering only the fundamental component, 
the fluctuating velocity field can be approximated in the following form : 
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FIQURE 7. (a)  Unsteady pressure field and corresponding visualized flow patterns for e / 2 H  = 0 at 
three successive times separated by an interval At/T = $. h,/2H = 1.62. Grid-hatched regions and 
cross-hatched regions represent respectively amplitude and instantaneous value of pressure 
fluctuation. ( b )  Unsteady pressure field and corresponding visualized flow patterns for e / 2 H  = 0.16 
at three successive times separated by an interval At/T = t .  A,/2H = 1.62. Grid-hatched regions 
and cross-hatched regions represent respectively amplitude and instantaneous value of pressure 
fluctuation. 

observed experimentally that there is essentially a single frequency, the KarmBn 
vortex shedding frequency, in the entire flow field. 

Amplitude and phase angle distributions over the measurement domain are given 
in detail by Gursul (1988). The amplitude distributions well upstream are 
qualitatively similar to those of the neutral disturbance solution for oscillations in 
the ‘sinuous mode’ obtained from the Rayleigh equation for an inverted top-hat 
profile (Betchov & Criminale 1967). Measurements suggest that the neutral wave-like 
disturbance remains undistorted up to  a distance of about half a wavelength from the 
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FIQURE 8. Instantaneous streamlines at  t = 0 for: (a) a fixed laboratory frame; (0) a reference frame 
moving with the vortices, i.e. Urer = U,, where U,  is the average convection velocity of the vortices 
in the undisturbed vortex street. 

leading edge of the body. Within the distortion region, large gradients of amplitude 
and phase are observed. The phase measurements provide information about the 
shape of the wavefront and the wavespeed of the disturbance as it travels 
downstream. When the phase speed U, is calculated from 

and averaged across the wake a t  x = - 8 cm, the dimensionless phase speed is found 
to be UJU,  = 0.90. 

The error due to measurement and discretization of the phase-averaged velocity 
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FIGURE 9. Instantaneous streamlines a t  successive times t during the period T of the incident 
vortex street for the reference frame moving with the vortices. 

field is evaluated as follows. The residual ei, a t  any mesh point (i,j) is defined by 
(Imaichi & Ohmi 1983) 

( 5 )  

This quantity gives an estimate of the degree to which the continuity equation is 
satisfied, and therefore it is a measure of accuracy. The velocity gradients au/ax and 

(au/ax + av/ay) sx sy 
UcC SY €61 = 
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Uref/Um = 0.7 v,,,/u, = 1.0 

FIGURE 10. Effect of reference frame on the streamline patterns. In  all cases, streamline pattern 
is at the same time t = 0. 

aw/ay are calculated by the central-differencing technique. The resultant distribution 
of Jeiil is given by Gursul (1988). In  the undisturbed part of the vortex street, Isii] is 
of the order of 2 YO. It is less than 5 % everywhere except in the region very close to 
the body (within 1 mm) where it reaches a value of 1&20%. Therefore, it is 
concluded that the equation of continuity is well satisfied and the calculated 
derivatives are sufficiently accurate. Furthermore, the value of cij is also a measure 
of the accuracy of the vorticity based on the velocity measurements, since the 
velocity gradients are calculated by the same finite-difference approximation. 

5.1. Streamline patterns 
Since the instantaneous total velocity field is known from equation (3), it is possible 
to calculate the instantaneous stream function $ according to : 

This line integral was evaluated numerically and $o was taken as zero a t  x = - 8 cm, 
y = - 3  cm. Figure 8 ( a )  shows the streamline pattern a t  t/T = 0 (5" is the period of 
the oscillation), which has a wavy shape. However, if the average convection speed 
of the undisturbed vortex street ( U J U ,  = 0.90) is removed, closed streamlines in a 
reference frame moving with the vortices are obtained (figure 8 ( b ) .  This phase- 
averaged flow field shows coherent structures having an appearance similar to the 
computed pattern of the von KdrmBn potential flow solution (Perry, Chong & Lim 
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FIGURE 11. (a) Source-like behaviour of the leading-edge obtained by superposing - U ,  on the 
mean flow field, omitting the fluctuating contributions. ( b )  Streamlines (at t = 0 )  near the leading 
edge in a reference frame moving a t  an angle with the wake axis. 

1982). It should be kept in mind that, in this frame, the body is not stationary ; it has 
a speed of -0.9Uw. When the streamline patterns are studied a t  other times (figure 
9) in this reference frame, the closed streamlines representing vortices seem to 
disappear near the body. Obviously, the choice of reference frame drastically changes 
the streamline pattern, and thereby one’s impression of the vortex-body interaction. 

Figure 10 shows, for a fixed time t /T = 0, the effect of reference frame on the 
streamline patterns. For all cases, closed streamlines disappear near the body. This 
can be explained by the presence of a ‘ source ’ effect ; a leading edge in a uniform flow 
can be constructed by superposing a proper distribution of sources on the uniform 
flow. Therefore, when - U ,  is superposed on the entire flow field, only the source flow 
will be observed. (This is equivalent to observing the flow field in a reference frame 
moving with the velocity Urn.) The streamline pattern in figure 11 (a) was obtained 
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FIQURE 12. For caption see facing page. 
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FIGURE 12. Contours of constant vorticity at; (a) t /T = 0, ( b )  0.25, ( c )  0.50 (d) 0.75. For all sets of 
vorticity contours, outermost contour has the same absolute value w* = 1.0; increment between 
contour lines is Sw* = 1.0 (s /H = 0). 

in this way; velocity - Uw was superposed on the mean flow field and the fluctuating 
field was suppressed. In summary, the source-like behaviour of the leading edge 
dominates the unsteady field, resulting in the disappearance of the closed streamlines. 
However, from the calculated vorticity field (see figure 12), we know that local 
vorticity extrema are present at, and downstream of, the impingement region. 
Therefore, it should be possible to find a reference frame in which closed streamlines 
are present. Figure l l ( 6 )  shows, for example, such a pattern in a reference frame 
moving at  an angle with the wake axis. 

Finally, the fact that streamlines in unsteady flows cannot give adequate 
information has been concluded by several investigators (e.g. Michalke 1964 : Lugt 
1979). Since streamlines are not invariant under the Galilean transformation, all 
possible reference frames should be considered at  different times to locate the closed 
streamlines. Of course, greater insight is obtained by studying the vorticity field, 
which is invariant with the reference frame in which it is viewed. 

5.2. Vorticity field 
The component of the instantaneous vorticity normal to the (z,y)-plane was 

(7) 
calculated from av au w ( x ,  y ,  t )  = ---, ax ay  
using the central-differencing technique. After an estimate of the vorticity was 
obtained using the instantaneous velocity components, it was non-dimensionalized 

and linear interpolation was used to plot the contours of dimensionless vorticity. An 
estimate of the uncertainty in the vorticity calculation owing to phase-averaging the 
flow field is presented by Gursul (1988). The standard deviation is around 1.0 
(dimensionless) in the undisturbed vortex street and 3.0 near the body. This 
uncertainty in the undisturbed vortex street approximately corresponds to 20 YO of 
the maximum vorticity in the vortical structures approaching the edge. 
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Contours of constant dimensionless vorticity a t  four successive times during the 
period of interaction are shown in figure 12. For all sets of vorticity contours, the 
outermost contour has the same absolute value o* = 1.0, which approximately 
corresponds to 20 YO of the maximum vorticity in the undisturbed vortex street ; the 
increment between contour lines is 6w* = 1.0. Some dubious cases, for example, the 
existence of double peaks in a vortex (figure 12), might be caused by plotting 
algorithms as well as by random error. 

Figure 12 shows that the vortical structures are 'frozen' in the undisturbed vortex 
street ; in fact, this is a result of phase-averaging the flow field. However, i t  is known 
that disturbances undergo quasi-periodic oscillations in the nonlinear stage of free 
shear layers. For the wake flow in particular, this has been observed in experiments 
(Sato & Kuriki 1961) as well as in numerical simulations (Zabusky & Deem 1971), 
which showed that the low-frequency nonlinear oscillation is associated with the 
nutation of the principal axis of an elliptical vortex with respect to  the mean flow. 
Note that the vortices tend to be elliptical in cross-section with a vertical major axis. 
(See the streamline patterns in figure 8.) Similar shapes of frozen structures have 
been obtained in a turbulent wake by directly using Taylor's hypothesis (Davies 
1976). A nearly circular shape might arise if many vortices having random 
orientations are averaged. 

An integral property of the vortex street which can be estimated from these results 
is the circulation of a typical vortex in the undisturbed vortex street. The circulation 
calculated as a line integral around a contour which encloses the vortex and passes 
through points of zero vorticity is r / U ,  A, = 0.51. Another important parameter is 
the ratio of the maximum total vorticity to the maximum mean vorticity: 

I. Gursul and D. Rockwell 

(9) "ma, 

Qmax 
Y=-. 

It has a value of 8.0 and is consistent with the values reported in the literature 
(Hussain 1986). 

When the vorticity contours are studied at successive times (figure 12), i t  is evident 
that the vortices are subjected to rapid distortion near the edge, deforming into 
elongated structures. The vortices become elliptical with their major axes parallel to 
the mean flow around the edge. This deformation, due to  the strain field near the 
edge, takes place over a distance of about half a wavelength, which is the extent of 
the upstream distortion for this interaction. During encounter with the edge, the 
vortical structures are split ; a portion of the negative vorticity (of the upper vortex) 
is swept along the lower surface of the body (see figure 12a). However, from 
inspection of the vorticity contours, it  is apparent that the original vortex loses little 
circulation. The extremum of the vortical structure follows a trajectory resembling 
a streamline of the mean flow. 

From detailed phase measurements (Gursul 1988) near the tip of the edge, the 
streamwise convection velocity U, changes in the cross-stream direction from a small 
value (UJU,  x 0.35) a t  the centreline to a larger value (UJU,  x 0.98) at the edge 
of the shear flow. Because of this variation in the convection velocity, the portion of 
the vortex near the tip moves slower than its central portion. Eventually, this slowly 
moving portion of the vortex impinges upon the tip of the edge while the central 
portion is swept along the surface of the body (see figures 12b and 12c). This process 
gives rise to the elongation of the vortical structure. 

It is of interest to compare the magnitudes of the vorticity in the incident vortex 
and the boundary layer. The boundary-layer thickness for the corresponding steady 
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flow (Schlichting 1979) for this elliptical leading edge is predicted to be around 
1.5 mm. The order of magnitude of the mean vorticity within the boundary layer is 
U J 6 ,  which is approximately 30 times larger than the vorticity in the incident 
vortices. Therefore, the vorticity within the vortices convected by the mean flow is 
small compared to the large vorticity in the wall layer, which is confined to a very 
small region near the body. Note that there is no boundary-layer separation. 
Numerical simulations and experiments show that the vortex Reynolds number 
Re = r/v must be sufficiently large in order to induce separation (Ersoy & Walker 
1985; Peace & Riley 1983; Harvey & Perry 1971). In the present experiment, 
Re = T / v  was around 2200. 

5.3, Pressure field 
The instantaneous pressure field was calculated by substituting the measured 
velocity field (equation (3)) in the Navier-Stokes equations. The derivatives au/at 
and &/at can be evaluated from (3). The spatial derivatives were calculated by the 
central-differencing technique. From the Navier-Stokes equations, the pressure 
gradients applax and ap/ay were computed a t  any desired time. In  the undisturbed 
part of the vortex street, these gradients are of the same order. Near the body, the 
streamwise pressure gradient ap/ax is usually larger than the cross-stream pressure 
gradient ap/ay. In  order to find the pressure distribution, the pressure a t  the point 
(x = - 8 cm, y = - 3 cm) was assumed to be zero (pw = 0) and the computed pressure 
gradients were numerically integrated : 

Depending upon the integration path, the difference between two integrated values 
of pressure was as large as O.lpu2,. Measurement error and discretization error lead 
to the error for the calculated pressure gradients at any mesh point. Moreover, the 
integration process gives rise to  accumulated error. Similar difficulties in the 
calculation of pressure from the experimental velocity data have been reported in 
other studies (Imaichi & Ohmi 1983; Mathioulakis & Telionis 1987). 

In  order to avoid an integration process, another approach was taken. The Poisson 
equation for pressure, which can be derived from the NavierStokes equations, is : 

The source term on the right-hand side can be calculated from the velocity field. The 
boundary conditions for the computational domain are as follows. At the bottom 
boundary (y = - 3 cm), the pressure values are found by integration : 

p(x, y = - 3  cm,t) = p,+ -dx. J: 
On all other boundaries, the normal derivatives are calculated from the momentum 
equations, i.e. 

ap/ax(x = -8cm,y,t), 

ap/ax(x = 2 cm, y, t ) ,  
ap/an, 

ap/ay(x, y = 3 cm, t), 

on the body surface (the symbol n refers to  the normal direction a t  the boundary). 
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FIGURE 13. Contours of vorticity (left-hand column) and dimensionless pressure (right-hand 
column) at successive times t /T = 0, 0.25, and 0.50. Regions of positive pressure are shaded. The 
smallest absolute value of pressure contour levels is p* = 0.05 and the increment between contour 
lines is Sp* = 0.05 (c /2H = 0). 

Then, a t  any instant, the Poisson equation subject to these boundary conditions is 
solved by using an iterative method (successive over-relaxation). 

In figure 13, the contours of vorticity in the left-hand column and the contours of 
dimensionless pressure p* = p/pvZ,  in the right-hand column are shown at three 
successive times t /T  = 0, 0.25 and 0.50. The regions of positive pressure are shaded. 
The smallest absolute value of the pressure contour levels is p* = 0.05 and the 
increment between contour lines is &p* = 0.05. Because of the method used to 
calculate pressure, the contours of constant values of pressure are smooth in spite of 
the expected error at each node of the grid. In the regions where the source term of 
equation (14) is small, the value at  each grid point is approximately the average of 
the values of the four neighbouring points. Therefore, the error is distributed more 
evenly. 

Upstream of the interaction region, the negative pressure regions corresponding to 
the vortical structures are consistent with the vorticity contours shown in the left- 
hand column. However, these closed contours of negative pressure disappear near 
the body where strong pressure gradients exist. Deceleration of the mean flow near 
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the stagnation point of the body causes a large area of positive pressure. Along the 
surface of the body, this region is followed by a region of negative pressure. The 
absolute value of the negative pressure contour levels increases in the downstream 
direction. Considering only the unsteady pressure field, vortices cause a negative 
pressure fluctuation on the surface of the body (either upper or lower surface) as they 
approach the surface. This is evidenced by an increase in the number of negative 
pressure contours adjacent to the surface (see, for example the upper surface a t  
t /T  = 0.25). At this instant, there is a decrease in the number of negative pressure 
contours around the lower surface, which corresponds to a positive peak in the 
pressure fluctuations. Inspection of the plots at t/T = 0 and t/T = 0.50 reveals that 
the pressure distributions show antisymmetry for upper and lower surfaces, implying 
K phase shift between the pressure fluctuations on the surfaces. 

The estimated uncertainty in the region away from the surface is around 0.05pVm. 
Since the error eij increases near the body, no attempt was made to calculate the 
amplitude of the pressure fluctuations along the surface. 

6. Flow visualization simulation 
It was concluded from the vorticity contours that the vortices are subject to 

distortion near the body, deforming into elongated structures. This change in shape 
was due to the straining field of the edge. In  fact, the flow visualization study (figure 
7 a )  suggests similar distortion. 

However, the streakline pattern for a potential (line) vortex impinging upon a 
corner (Conlisk & Veley 1985) shows similar elongation. Therefore, in laboratory 
flows, the interpretation of visualization of distributed velocity fields encountering 
leading edges has remained unclarified. In  this section, an attempt will be made to 
examine some aspects of flow visualization and its interpretation. 

Since the instantaneous total velocity field is known from measurements 
represented by (3), it is possible to track the particles of the defined flow, leading to 
the timelines and streaklines. Because the velocity was measured only a t  discrete 
points, bilinear interpolation was used to obtain the velocities a t  any arbitrary point. 
To integrate the equations of motion of the particles, i.e. 

dx 
- = u(2, y, t ) ,  dt 

* = v(x ,  y, t ) ,  
dt 

the Euler method was used with a timestep of one-hundredth of the period of the 
flow. To generate a timeline, a row of N particles are marked on the line x = xo a t  
t = to. The timeline a t  t = t* is then obtained by connecting these particles. 
Generating and connecting rows of particles at a certain frequency creates a set of 
timelines moving in the downstream direction. On the other hand, generating a 
succession of particles from a given location until a time t = t*, and connecting them, 
provides a streakline. 

Figure 14 shows the vorticity contours and the streakline patterns at successive 
times t / T  = 1.5, 1.75, 2.0 and 2.25, after the marker is injected a t  the left-hand 
boundary of the measurement grid. The simulated streaklines give the impression of 
an amplifying disturbance near the left-hand boundary. The apparent ‘roll-up ’ of 
the streaklines is followed by their distortion and segregation during impingement 
upon the edge. From this visualization, it is difficult to predict the locations of the 
vorticity extrema ; moreover, the apparent size of the streakline ‘ roll-ups ’ are much 
larger than the vorticity concentrations. Comparisons of the corresponding timeline 
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FIGURE 14. Vorticity contours (left-hand column) and streakline patterns (right-hand column) 
a t  successive times t /T  = 1.5, 1.75, 2.00 and 2.25. 

patterns with the streakline patterns is given in figure 15. These patterns are very 
similar. 

Since the unsteady flow field near the body is not that of a neutral disturbance, it 
is expected that the location of injection of the marker will be important. Figure 
16(a) shows the vorticity contours a t  instant t = 0 used as a basis for simulating 
streakline and timeline visualization. I n  figure 16 ( b ) ,  the timeline patterns are shown 
for different locations of the marker probe. It should be emphasized that the 
vorticity field is the same for both cases. Corresponding streakline patterns are 
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FIGURE 15. Timeline and streakline patterns at successive times t /T = 1.5, 1.75, 2.0 and 2.25. 

shown in figure 16(c). For ‘wire’ or ‘marker probe’ locations closer to the body, it 
becomes more difficult to relate the visualized flow field to the prescribed vorticity 
field of figure 16(a) because of the amplifying appearance of the streaklines and 
timelines. It is therefore concluded that the ‘marker probe’ should be located 
sufficiently far upstream of the body to allow the markers to ‘roll-up’. Otherwise, the 
estimated location of the vorticity concentrations can lead to very erroneous 
interpretations. 
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FIQIJRE 16. For caption see facing page. 
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FIQURE 16. (a) Vorticity contours at the instant of simulated visualization. ( b )  Timeline patterns 
for different streamwise locations of marker probe. In both cases, flow field is the same, as defined 
by vorticity contours of (a). (c) Streakline patterns for different streamwise locations of marker 
probe. In both cases, flow field is the same, as defined by vorticity contours of (a). 

7. Conclusions 
It has been shown that there are a variety of possible vortex street-edge 

interactions depending on the lengthscales of the incident vorticity field and the 
edge. Important parameters are the transverse offset 8 ,  the half-thickness of the edge 
Hand the wavelength A,  in the undisturbed vortex street which was varied by using 
different upstream plates. It is possible to classify these flow-dge interactions using 
the dimensionless scale h,/H.  Two representative scales were studied ; they were 
designated as ‘small- ’ and ‘large- ’ scale vortex streets. Three basic interaction 
mechanisms were observed : (a )  the vortex street preserved its identity ; ( 6 )  the vortex 
street was split into two separate single rows of vortices; ( c )  each vortex in one row 
of the vortex street was split and its coherence was lost. The first two of these 
mechanisms were observed for both the small-scale and large-scale vortex streets, 
whereas the last one is possible only for the large-scale street. 

These interactions gave rise to different types of wave-like unsteady pressure fields 
on the body, which were reconstructed by using a phase-averaging technique and 
related to the visualized flow patterns. The order of magnitude of the pressure 
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fluctuation amplitude varies strongly with the dimensionless lengthscale h,/H of the 
incident vorticity field as well as with the dimensionless transverse offset s / 2 H .  In the 
case where the vortex street preserved its identity, general features of the phase- 
averaged pressure field are in accord with inviscid simulations employing discrcte 
vortices. For the other types of interaction, the distributions of pressure amplitude 
show substantial departure from what is expected based on simple simulations ; there 
occurs a pronounced peak near the tip region of the edge. Regarding thc pressure 
distribution over the edge, the present case is fundamentally different than those of 
Kaykayoglu & Rockwell (1985, 1986). In the case of a sharp edge, the pressure has 
maximum amplitude a t  the tip or downstream of the tip depending on the location 
of the boundary-layer separation and secondary vortex formation. However, in the 
present experiments there is no boundary-layer separation and the pressure is only 
due to the passage of the incident vortices. 

Measurements of amplitudes and phase angles of the unsteady velocity field 
provided the phase-averaged flow field for a basic, generic interaction of the vortex 
street with the edge. The streamline patterns give different impressions depending on 
the reference frame in which they are viewed ; closed streamlines near the body may 
not be attainable for any reference frame owing to the large transverse velocity 
component near the leading edge. The calculated vorticity field (from velocity 
measurements) revealed that the distortion of vortical structures takes place in a 
distance of about half a wavelength from the edge. During the distortion, the vortices 
are deformed into ellipses with their major axes parallel to the mean flow around the 
edge. While the vortices are swept along the surface, near the tip of the edge they are 
subject to rapid elongation in the cross-stream direction, resulting in large vortirity 
fluctuations around the tip of the edge. No boundary-layer separation was observed 
because of the low value of the vortex Reynolds number Re = r/v. The pressure field 
calculated from the measured velocity field by using the Poisson equation showed the 
essential features of the surface pressure distribution. 

Because of its use in this study and its fundamental importance, flow visualization 
of this generic interaction was simulated using the measured velocity field. This 
simulation confirmed that the location of injection of the marker must be considered 
in interpreting the flow visualization for vortex-edge interactions. When the wire is 
located very close to the leading-edge, the streaklines have an amplifying appearance 
before they reach an equilibrium. On the other hand, if the wire is located well 
upstream, the visualized flow in downstream regions may have little to do with the 
real flow. 
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